Skip to content Skip to navigation

Academic Events

Publication: Improved photocatalytic degradation of ketoprofen by Pt/MIL-125(Ti)/Ag with synergetic effect of Pt-MOF and MOF-Ag double interfaces: Mechanism and degradation pathway

Assoc. Prof. Shihai Cui published his research papers in CHEMOSPHERE202010,257,127123


It is a central issue to improve the separation efficiency of photogenerated charge carriers and the utilization of visible light in the field of photocatalysis. Herein, taking MIL-125(Ti) as a host material, the Pt/MIL-125(Ti) was first prepared by solvothermal method to build the interface of Schottky junction. Ag was then introduced onto the surface of Pt/MIL-125(Ti) to form the interface with the surface plasmon resonance effect. These double interfaces in the composite play a synergistic role on the photodagradation. The morphology, crystallinity and photochemical properties of the material were tested. By comparison, Pt/MIL-125(Ti)/Ag (4 wt% Ag) exhibited the best performance in the photodegradation of ketoprofen (KP, 10 mg/L) and the degradation process conformed to the pseudo-first-order kinetics. The photodegradation rate is 0.0253 min(-1), which was higher than MIL-125(Ti) (0.0009 min(-1)). The TOC removal efficiency of KP reached approximately 51.5%. The electron paramagnetic resonance (EPR) and free radical capture tests verified that h(+) and center dot OH played the prominent roles during the reaction system. The degradation process, possible pathways and reaction mechanism were proposed. The design of the double interfaces between semiconductor and noble metals is a novel strategy to enhance the photocatalytic performance.