Skip to content Skip to navigation

Academic Events

Publication: Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO2 Photoreduction with H2O

Prof. Yaqian Lan published his research papers in ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (201908, DOI: 10.1002/anie.201906890)


Solar energy-driven conversion of CO2 into fuels with H2O as a sacrificial agent is a challenging research field in photosynthesis. Herein, a series of crystalline porphyrin-tetrathiafulvalene covalent organic frameworks (COFs) are synthesized and used as photocatalysts for reducing CO2 with H2O, in the absence of additional photosensitizer, sacrificial agents, and noble metal co-catalysts. The effective photogenerated electrons transfer from tetrathiafulvalene to porphyrin by covalent bonding, resulting in the separated electrons and holes, respectively, for CO2 reduction and H2O oxidation. By adjusting the band structures of TTCOFs, TTCOF-Zn achieved the highest photocatalytic CO production of 12.33 mu mol with circa 100 % selectivity, along with H2O oxidation to O-2. Furthermore, DFT calculations combined with a crystal structure model confirmed the structure-function relationship. Our work provides a new sight for designing more efficient artificial crystalline photocatalysts.