Skip to content Skip to navigation

Academic Events

Publication: Substrate specificity-enabled terminal protection for direct quantification of circulating MicroRNA in patient serums

Assoc. Prof. Zhaoyin Wang and Prof. Zhihui Dai published their research papers in CHEMICAL SCIENCE (201906,10(21),5616-5623)

 

Currently, reported affinity pairings still lack in diversity, and thus terminal protection relying on steric hindrance is restricted in designing nucleic acid-based analytical systems. In this work, resistance to exonuclease is testified by group modification or backbone replacement, and the 3 '-phosphate group (P) reveals the strongest exonuclease I-resistant capability. Due to the substrate specificity of enzymatic catalysis, this 3 '-P protection works in a direct mode. By introducing DNA templated copper nanoparticles, an alkaline phosphatase assay is performed to confirm the 3 '-P protection. To display the application of this novel terminal protection, a multifunctional DNA is designed to quantify the model circulating microRNA (hsa-miR-21-5p) in serums from different cancer patients. According to our data, hsa-miR-21-5p-correlated cancers can be evidently distinguished from non-correlated cancers. Meanwhile, the effect of chemotherapy and radiotherapy on breast cancer is evaluated from the perspective of hsa-miR-21-5p residue in serums. Since greatly reducing the limitations of DNA design, this P-induced terminal protection can be facilely integrated with other DNA manipulations, thereby constructing more advanced biosensors with improved analytical performances for clinical applications.

Link
https://pubs.rsc.org/en/content/articlelanding/2019/SC/C8SC05240A#!divAbstract